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Macroscopic Determinism in Noninteracting Systems
Using Large Deviation Theory

Brian R. La Cour1, 2 and William C. Schieve1

Received September 24, 1999; final January 11, 2000

We consider a general system of n noninteracting identical particles which
evolve under a given dynamical law and whose initial microstates are a priori
independent. The time evolution of the n-particle average of a bounded function
on the particle microstates is then examined in the large-n limit. Using the
theory of large deviations, we show that if the initial macroscopic average is
constrained to be near a given value, y, then the macroscopic average at time
t converges in probability as n � � to a value �t( y) given explicitly in terms of
a canonical expectation. Some general features of the graph of �t( y) versus t are
examined, particularly in regard to continuity, symmetry, and convergence.

KEY WORDS: determinism; causality; large deviation theory; many-particle
systems; fluctuations; nonequilibrium statistical mechanics; kinetic theory.

1. INTRODUCTION

The emergence of determinism in the macroscopic variables of a system
from its underlying microscopic dynamics has been a subject of great
importance in the field of statistical mechanics. If one supposes the micro-
scopic variables are rigidly deterministic, then the time evolution of the
macroscopic variables as a function of the initial microstate is of course
rigidly deterministic as well. Considered as a function of the initial macro-
state, however, its time evolution fails to be deterministic due to the multi-
plicity of microstates consistent with the given macrostate. This leads to the
familiar ensemble description, as described by a conditional a priori measure.
Given the highly irregular behavior of many macroscopic systems on the
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microscopic level, however, it may appear that all deterministic behavior is
utterly lost on the macroscopic level.

By contrast, many macroscopic systems are described quite well by
deterministic models, even if they are not deterministic in the strict sense.
Well known examples include thermal conduction, diffusion, hydro-
dynamics, and chemical reactions. Characteristic of many such systems is
the presence of extensive macroscopic variables which are sums or averages
over a great many microscopic quantities. The task of deriving differential
equations for such variables has been taken up by several researchers, (1�3)

and here Markov processes have played an important role. In this approach,
one derives a coupled set of differential equations for the moments of the
macroscopic variable, where the deterministic behavior is given by the first
moment when the dispersion goes to zero. Since few physical observables
are truly Markovian, delicate scaling between vanishing interactions and
dilating time scales must be used to obtain an asymptotically Markovian
process.(4, 5) However, the consistency of such assumptions with the under-
lying microscopic dynamics and the relevance of strong interactions have
been repeatedly called into question.(6, 7) In particular, the relaxation of
macroscopic systems to a state of equilibrium may seem inconsistent with
the underlying reversible microscopic dynamics.

We take a somewhat different and more general view upon this
problem. Instead of attempting to derive differential equations of motion
for a class of macroscopic variables, we consider instead the existence and
character of an emergent form of determinism for large systems, which we
call macroscopic determinism. By this we mean that if the macrostate is
initially constrained to be near a given value, y, then there exists a map �t

such that the probability that the macrostate is near �t( y) at time t
approaches one as the number of particles approaches infinity. For sim-
plicity, we restrict attention to systems of dynamically noninteracting
particles and macroscopic variables which take the form of averages over
these microscopic quantities. The mathematical theory of large deviations,
an extension of the law of large numbers, provides an useful tool for
addressing such questions and is used in Section 3 to obtain the main
result. Our primary contribution has been to apply well-known equilibrium
results to systems initially out of equilibrium.

The collection of macrostates [�t( y): t # T ] for a given y and set of
times T constitutes a collection of highly probable states, which we call the
deterministic curve, akin to the concentration curve of P. and T. Ehrenfest
in their discussion of Boltzmann's H-theorem.(8) In Section 4 we show that
the macroscopic average converges to this curve in probability for any
given finite, and in some cases infinite, set of times, though large deviations
from this curve will persist whenever the number of particles is finite. For
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certain reversible microscopic dynamics which preserve the a priori measure,
the deterministic curve of a restricted class of macroscopioc variables is
symmetric in time about the initial specification of the macroscopic
variable. Furthermore, if the microscopic dynamical law is mixing, then
the deterministic curve converges as t � \� to a value independent of y,
a situation corresponding to equilibration of the macrostate.

2. PROBLEM DESCRIPTION

We begin with a mathematical description of the relevant physical
quantities. The microstate space of a single particle is denoted by X, while
the microstate space of the total n-particle system is given by the Cartesian
product X n=X_ } } }n _X. The projection map ?i is defined such that, if
(x1 ,..., xn) # X n is the microstate of the system, then ? i (x1 ,..., xn)=x i is the
microstate of the i th particle. To apply the techniques of large deviation
theory we shall need to make the mild assumption that (X, d ) is a Polish
space, i.e., a complete separable metric space, with respect to some given
metric d, and denote by A the set of Borel subsets of X generated by the
metric topology.

Let P(X ) denote the set of Borel probability measures on X and note
that P(X ) is itself a Polish space under the Prohorov metric, \, induced by
the metric d on X [9, p. 317]. Denote by + # P(X ) the a priori probability
measure for the initial microstate of a given particle. In other words, for
C # A, +[C ] is the probability that a given particle's initial microstate is
in C�X, before any conditioning on the macrostate has taken place. All
particle microstates therefore have equal a priori probability in the sense
that they are uniformly distributed with respect to +. Usually, + is taken to
be an invariant measure. The system microstates are assumed to be a priori
independent and identically distributed (i.i.d.) with marginal +. Thus, the a
priori distribution on X n is given by the product measure +n=+_ } } }n _+.

Let g: X � Y be a measurable function which is bounded and con-
tinuous +-almost everywhere (a.e.). For a given particle microstate xi # X,
g(xi ) gives the corresponding single particle macrostate. For a collection of
n particles, the macroscopic average G: X n � Y of g is given by

G :=
1
n

:
n

i=1

g b ?i (1)

It is to this macroscopic variable that we will focus our attention. We shall
take Y to be a set of real numbers equipped with the Euclidean norm. To
accommodate all possible values of G as well as any accumulation points,
we shall assume Y=[ ymin , ymax], where ymin=inf g(X ), ymax=sup g(X ),
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and g(X ) is the image of X under g. Note that G is indeed a measurable
function since it is a finite sum of measurable functions.

The dynamics of the system are described by a family of measurable
transformations 8t on X n indexed by the time parameter t # T�R, where
80 is the identity map. The macroscopic average at time t is thus given by
Gt :=G b 8t . We shall suppose that the particles are dynamically indepen-
dent and identical in the sense that

8t=(.t b ?1 ,..., .t b ?n) (2)

where .t is a measurable transformation on X. We shall further suppose
that .t is continuous +-a.e. on X for each t # T, though not necessarily
continuous on T for +-a.e. x # X.

The macrostate Gt may be considered a sample mean over the a priori
i.i.d. random variables [.t b ? i ]n

i=1 with common marginal + b (g b .t)
&1.

Since g is bounded, the weak law of large numbers implies Gt converges in
probability to the expectation value �X g b .t d+ as n � �; in other words,

lim
n � �

+n[Gt # B]={0, if �X g b .t d+ � B� ,
1, if �X g b .t d+ # B%

(3)

for any Borel set B�Y, where B% is the interior of B and B� is its closure.
No limit is specified for points on the boundary, �B, of B.

If the initial microstates are restricted so as to satisfy some initial
macroscopic constraint, then the variables [.t b ?i ]n

i=1 may no longer be
independent due to the correlations imposed by this conditioning. A direct
application of the law of large numbers is therefore no longer valid.
Suppose, in particular, that the initial macrostate G0=G is constrained to
be in a small region B$ containing a given macrostate y. We will show that
Gt converges in conditional probability to some �t( y); in other words,

lim
n � �

+n[Gt # B | G # B$]={0, if �t( y) � B� ,
1, if �t( y) # B%

(4)

where �t( y) is the expectation value of g b .t with respect to a new prob-
ability measure determined by y. Of course, if y= y

*
:=�X g d+, the a

priori expectation, then this result clearly holds with �t( y
*

)= y
*

.
If we take y=ymin and suppose +[[g=ymin]]>0, then the law of

large numbers may in fact be applied since [G=ymin]=[g=ymin]_ } } }n _
[g=ymin] implies

+n[A1_ } } } _An | [G=ymin]]= `
n

i=1

+[Ai | [g=ymin]] (5)
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for any A1 ,..., An in A. Thus, conditioned on [G=ymin], Gt is a sample
mean of i.i.d. random variables with common marginal +[(g b .t)

&1 ( } ) |
[g=ymin]]. The weak law of large numbers then implies

lim
n � �

+n[Gt # B | [G=ymin]]={0, if �t( ymin) � B� ,
1, if �t( ymin) # B%

(6)

for any Borel set B�Y, where

�t( ymin) :=|
X

g b .t d+[ } | [g=ymin]] (7)

A similar result holds for conditioning on [G=ymax], provided
+[[g=ymax]]>0.

For y # ( ymin, ymax)=Y% we employ a different approach using large
deviation theory to study the behavior as n � � of the empirical measures
Ln : X n � P(X ) defined by

Ln(x1 ,..., xn) :=
1
n

:
n

i=1

$xi
(8)

Using the fact that G=Eg b Ln , where

Eg(P) :=|
X

g dP for P # P(X ) (9)

we may then deduce convergence properties of Gt from those of Ln . Note
that, since g is bounded and continuous +-a.e., Eg is continuous at P (in
the weak topology) for any PO+.(9, 10) As will be shown, by allowing g to
be discontinuous at most on a set of measure zero we are able to incor-
porate both continuous observables and physically relevant discrete-valued
observables within a single framework using the standard weak topology
on P(X ). (One may obtain similar results using the stronger {-topology, (11)

for which Eg is continuous everywhere by definition.)

3. LARGE DEVIATION THEORY APPROACH

We have seen in the previous section that the weak law of large num-
bers is insufficient for evaluating limiting conditional probabilities for an
arbitrary choice of y. Large deviation theory provides a tool for evaluating
such limits and, through its application, provides an explicit expression for
�t( y). This approach is a refinement of the weak law of large numbers for
cases in which the probabilities converge exponentially fast at a rate given
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in terms of a function I, the so-called ``rate function.'' The ground work
for this theory was established by Boltzmann(12) in his study of the asymp-
totic properties of multinomials and later applied by Einstein(13) in his
analysis of fluctuations. Recent years have seen great development of this
relatively new field of mathematical probability, including applications in
equilibrium statistical mechanics, stochastic processes, and mathematical
statistics.(14, 15, 11, 16) Ruelle(17) and Lanford(18) have developed similar
techniques for studying the equilibrium distributions of dynamical maps,
where the (negative) Kolmogorov�Sinai entropy serves as a rate function.(19)

In Section 3.1 we define rate functions and the large deviation prin-
ciple. The main result is Theorem 1 regarding convergence in probability
for conditional probabilities. In Section 3.2 we take up the notion of Gibbs
Conditioning, which will allow us to apply Theorem 1 to cases in which we
condition on an arbitrary initial macrostate y. Our results are similar to
those of Dembo and Zeitouni, (11) who consider Gibbs conditioning using
the stronger {-topology on P(X ), and follow from an approach adapted
from Ellis, (20) who considers discrete macrostates. Our final results are
somewhat more general in that g may be any bounded, +-a.e. continuous
function and Eq. (16) holds for any fixed $>0.

3.1. Large-Deviation Theory

For a topological space (X, T), a function I mapping X into [0, �]
is called a rate function iff inf I(X )=0 and I is lower semicontinuous, i.e.,
the preimage I&1([0, :]) is closed for all : # [0, �). A good rate function
is one in which these preimages are compact. The property of being lower
semicontinous guarantees that I attains its infimum on any compact set,
from which it follows that a good rate function attains its infimum over any
closed set [11, pp. 4, 308]. Any point, x

*
, at which I(x

*
)=0 is called an

equilibrium point, since it corresponds to a state of maximum probability.
A sequence (Pn)n # N of probability measures on the Borel subsets of X

is said to satisfy a large deviation principle with rate function I iff there
exists a sequence (an)n # N of positive numbers tending to infinity such that,
for any Borel set A�X,

&inf I(A%)�lim inf
n � �

1
an

log Pn[A]

�lim sup
n � �

1
an

log Pn[A]

�&inf I(A� ) (10)
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A set A for which inf I(A%)=inf I(A� ) is called an I-continuity set. Clearly
for such sets we have

lim
n � �

1
an

log Pn[A]=&inf I(A) (11)

This result should be compared with the Boltzmann relation, S=kB log W,
relating the thermodynamic entropy, S, to a volume, W, in phase space,
where kB is Boltzmann's constant. The quantity &anI serves as an entropy,
while Pn may be viewed as a normalized volume measure.

If 0<inf I(A)<�, Eq. (11) implies that Pn[A] converges to zero at
least exponentially fast. More generally, from Eq. (10) we may deduce the
following: Given any Borel set A�X and =>0, then for all n sufficiently
large

exp[&an(1+=) inf I(A%)]�Pn[A]�exp[&an(1&=) inf I(A� )] (12)

provided inf I(A%)>0 and inf I(A� )<�. Equality for the lower bound may
hold only if inf I(A%)=�, where e&� :=0, while equality for the upper
bound may hold only if inf I(A� )=0.

Conditioning on a set, B, of nonzero probability may give rise to a
new equilibrium point, xB # B� , different from x

*
. (Of course, xB will equal

x
*

if x
*

# B%.) The following theorem, which falls short of a general con-
ditional large deviation principle, gives sufficient conditions for conver-
gence in conditional probability to such a point. The proof is deferred to
Appendix A.

Theorem 1. Suppose (Pn)n # N satisfies a large deviation principle
with a good rate function I and a unique equilibrium point x

*
. Let B�X

be an I-continuity set such that x
*

� �B and there exists a unique xB # B�
such that I(xB)=inf I(B� )<�. Given any Borel set A�X,

lim
n � �

Pn[A | B]={0, if xB � A� ,
1, if xB # A%

(13)

In the next section, we shall consider a large deviation principle for the
sequence (+n b L&1

n )n # N of distributions of empirical measures. Although
Ln � + almost surely [9, p. 313], conditioning on E &1

g (B$) gives rise to a
new equilibrium probability measure, P* , which is canonical in form. We
shall show that under these conditions Theorem 1 is satisfied, thus estab-
lishing convergence of Ln in conditional probability to P* .

1231Macroscopic Determinism in Noninteracting Systems



3.2. Gibbs Conditioning

In his 1877 paper, Boltzmann proved that the asymptotically most
probable configuration for a gas of n particles with a finite number of
macrostates is given by a multinomial distribution. Sanov's theorem [14,
p. 70], a modern refinement of this classic result, states that the sequence
(+n b L&1

n )n # N of distributions of empirical measures satisfies a large devia-
tion principle with rate function I+ : P(X ) � [0, �]. Here I+(P) is the
(negative) Gibbs entropy of P with respect to + defined by

I+(P) :={|X

dP
d+

log
dP
d+

d+,

�

if PO+,

otherwise
(14)

where 0 log 0 :=0. It can be shown that I+ is a good, strictly convex rate
function [11, p. 240] which attains its infimum uniquely at + [16, pp. 32�34].

Given y and $>0, let A$=E &1
g (B$), where, B$=( y&$, y] when

y< y
*

, B$=[ y, y+$) when y> y
*

, and B$=( y
*

&$, y
*

+$) when
y= y

*
. (Note that + � �A$ , since y

*
� �B$ and Eg is continuous at +.) We

wish to consider the asymptotic behavior of the conditional probability
(+n b L&1

n )[A | A$]=+n[[Ln # A] | [Ln # A$]], as n � �, for any Borel set
A�P(X ). For example, if G is the macroscopic average energy of the
system, then +n[ } | [G # B$]] is the microcanonical distribution on the
``thickened'' energy shell with energy y.

We will show that, conditioned on [G # B$], the empirical measures
(Ln)n # N converge in probability to the canonical Gibbs measure P* , where
* satisfies the constraint y=�X g dP* and

dP*(x) :=
e*g(x)

Z(*)
d+(x) (15)

The normalization factor Z(*) :=�X e*g d+ is the partition function, and the
quantity 9(*) :=log Z(*) is the generalized free energy. Note that, if G is
the macroscopic average energy, then &kBT 9(&1�(kBT )) is the familiar
Helmholtz free energy at temperature T.

Denote by % the map %: [&�, +�] � Y which associates a given *
with a certain value of y and is defined by %(*) :=�X g dP* for * # R,
%(&�) := ymin, and %(+�) := ymax . The following lemmas will be needed.
The proofs are deferred to Appendix B.

Lemma 1. If 9"(*) is nonzero for all * # (&�, +�), then the map
% is one-to-one. Furthermore, y< y

*
iff *<0, y= y

*
iff *=0, and y> y

*
iff *>0.
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Lemma 2. Let A$=E &1
g (B$) and *=%&1( y). Then I+(P*)=

inf I+(A$ )<� and I+(P*)<I+(P) for all P # A$ "[P*], where *=%&1( y).

Lemma 3. The set A$=E &1
g (B$) is an I+ -continuity set.

Using the above lemmas we may deduce that A$=E &1
g (B$) is such

that + � �A$ and, for *=%&1( y), P* is the unique measure in A$ such that
I+(P*)=inf I(A$ )=inf I(A%$)<�. By Theorem 1 we conclude that for any
Borel set A�P(X ),

lim
n � �

+n[[Ln # A] | [Ln # A$]]={0, if P* � A� ,
1, if P* # A%

(16)

In particular, for any Borel set B�Y,

lim
n � �

+n[[Gt # B] |[G # B$]]={0, if �t( y) � B� ,
1, if �t( y) # B%

(17)

where

�t( y) :=|
X

g b .t dP%&1( y) (18)

Note that �0( y)= y since .0 is the identity on X. Conditioning on
[Gt0

# B$] merely shifts the time axis, in which case Gt converges to
�t&t0

( y) in probability.

4. THE DETERMINISTIC CURVE

We have shown that, conditioned on G # B$ , the macrostate Gt at a
given time, t, converges in probability to the expectation value �t( y),
where y is contained in B$ . Hence, of the initial microstates consistent with
the initial macrostate, y, ``most'' will be such that the actual macrostate
realized will be near this value. Now, each microstate, (x1 ,..., xn), gives
rise to a collection, [Gt(x1 ,..., xn): t # T ], of macrostates constituting a
single trajectory. Likewise, each macrostate, y, gives rise to a collection,
[�t( y): t # T ], of expected macrostates, which we shall call the determin-
istic curve. This graph represents the asymptotically deterministic behavior
of the macrostate. In this section we shall investigate in what sense the
deterministic curve is representative of a typical trajectory and consider
several properties of the deterministic curve itself, considered as a function
of time.
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In general, there may be striking qualitative differences between the
deterministic curve and a particular macrostate trajectory. Suppose + is
invariant under .t and +n[G&1(B$)]>0. The Poincare� recurrence theorem
tells us that for some unbounded sequence {1 , {2 ,... of times

+n[[G{1
# B$ , G{2

# B$ ,...] | [G # B$]]=1 (19)

i.e., the macrostate returns infinitely often to a neighborhood of its initial
value, y, almost surely. Now suppose the map t [ �t( y) has an attracting
set A with domain of attraction D and take B$�D"U, where U is a
neighborhood of A. For all t sufficiently large, �t( y) will be in U, but Gt

will almost surely fall outside U on the recurrence times {1 , {2 ,... . These
recurrence times will depend upon B$ and .t , of course, but typically
increase rapidly with n. On a time scale small compared to {1 , one then
expects the deterministic curve to be quite representative of a typical trajec-
tory. On time scales larger than {1 , however, the deterministic curve will be
qualitatively quite different from a typical trajectory; the former converges
to an attracting set while the latter exhibits quasi-periodic behavior. This
highlights the importance of a clearer understanding of the correspondence
between the very distinct n<� and n=� cases.

4.1. Convergence to the Deterministic Curve

Consider a finite set, [t1 ,..., tm], of times and for each time ti let Bi�Y
be a Borel set. The set of microstates in which Gti

# Bi for all i is given by

,
m

i=1

[Gti
# Bi ]={Ln # ,

m

i=1

Ai=
where Ai=E&1

g b .ti
(Bi ). According to Eq. (16), with A=�m

i=1 Ai , the limit-
ing conditional probability will be zero if P* � �m

i=1 Ai , where *=%&1( y),
and it will be one if P* # (�m

i=1 A i )%. Since the intersection is over a finite
number of sets, we may use the fact that (�m

i=1 Ai )%=�m
i=1 Ai% and

�m
i=1 Ai ��m

i=1 Ai to obtain the following:

lim
n � �

+n _,
m

i=1

[Gti
# Bi ] } [G # B$]&={0, if �tj

( y) � B� j for some j,
1, if �ti

( y) # Bi% for all i
(20)

For a countably infinite set of times, we may again conclude that the
conditional probability goes to zero if �tj

( y) � B� j for some value of j, since
��

i=1 [Gti
# Bi ]�[Gtj

# Bj ]. However, even if �ti
( y) # Bi% for all i and

hence P* # ��
i=1 Ai%, this does not assure us that P* # (��

i=1 Ai )%. For the

1234 La Cour and Schieve



latter to be true, there must be a neighborhood of P* which is sufficiently
small so that it is contained in every Ai%. Let us consider, then, conditions
for which this is true.

Suppose each Bi is an open interval of radius $$ centered at �ti
( y).

Now, each corresponding Ai is an open set of probability measures which
give an expectation of g b .ti

in the open ball Bi . Loosely speaking, if g b .ti
,

and hence Eg b .ti
, varies too rapidly, then Ai will be small as a result. If,

therefore, the functions [ g b .ti
]i # N are somehow limited in how rapidly

they may vary, then one might expect the sizes of A1 , A2 ,... to be bounded
from below, thus giving a nonempty interior for their intersection. For a
general metric space, (X, d ), one way to characterize how rapidly a func-
tion, f, may vary by its Lipschitz norm, & f &L , define as follows:

& f &L := sup
x{x$

| f (x)& f (x$)|
d(x, x$)

(21)

Differentiable functions will be Lipschitz if they have bounded derivatives;
discontinuous functions, such as indicator functions, have infinite Lipschitz
norm provided d(x, x$) may be made arbitrarily small.

To ensure well-defined expectations we require the functions to be
bounded as well, so consider instead the bounded Lipschitz norm, & }&BL ,
defined simply by & f &BL :=& f &L+& f &� . (For a discussion of this norm,
see Dudley(9)). A set, [ fi ]i # N , of functions will be called uniformly bounded
Lipschitz if there exists a number, K, such that & fi&BL�K for all i # N. The
following theorem states that for such observables the macroscopic trajec-
tories converge in conditional probability to the deterministic curve on any
countable set of times.

Theorem 2. If [g b .ti
] i # N are uniformly Lipschitz bounded func-

tions, then for any t1 , t2 ,...,

lim
n � �

+n[[ |Gti
&�ti

( y)|<$$, \i # N] | [G # B$]]=1 (22)

As noted above, this result may be proven by finding an open ball,
B\(P* , =), about P* which is contained in every Ai . Consider an arbitrary
probability measure, P, in B\(P* , =) and observe that, since we have
assumed &g b .ti

&BL�K,

|Eg b .ti
(P)&�ti

( y)|�sup[ |Ef (P)&Ef (P*)|: & f &BL�K ]

=K sup[ |Ef (P)&Ef (P*)|: & f &BL�1]

�2K\(P, P*)<2K=
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where the last inequality follows from [9, pp. 310, 322], since (X, d ) is a
separable metric space. Taking =�$$�(2K ) shows that Eg b .ti

(P) # Bi for all
P # B\(P* , =) and hence that B\(P* , =)�Ai . Since = is independent of i, we
conclude that P* # B\(P* , =)�(��

i=1 Ai )%.
For discrete time maps with suitable observables, Theorem 2 shows

that the macrostate trajectories converge in conditional probability
everywhere to the deterministic curve. This result may seem surprising,
since we have seen that the long-time behavior of a typical trajectory may
differ radically from that of the deterministic curve. However, this simply
means that the time scale on which the macroscopic behavior appears
deterministic grows rapidly with the number of particles.

The case in which the set of times, T, takes on a continuum of values
is somewhat more problematic owing to the fact that an arbitrary intersec-
tion of measurable sets need not be measurable. If, however, [Gt : t # T ] is
sample continuous on an interval, T, i.e., if t [ Gt(x1 ,..., xn) is continuous
for every (x1 ,..., xn), then we may consider [Gt : t # T ] to be a random pro-
cess on the metric space of bounded continuous functions with the
supremum norm. For physical observables this is quite reasonable to sup-
pose. Much as in the theory of Brownian motion, we may then consider
events of the form [supt # T |Gt&�t( y)|�$$] and their corresponding con-
ditional probabilities as n � �. It may then be possible to derive a large
deviation principle on the set of bounded continuous functions on T, much
as is done for Brownian motion in Schilder's theorem, (11) but here we do
not pursue this matter further.

4.2. Properties of the Deterministic Curve

In the previous section we considered the probabilistic convergence of
macrostate trajectories to the asymptotic deterministic curve. In this sec-
tion we consider properties of the deterministic curve, [�t( y): t # T ] as a
function of t in its own right. Of course, we do not expect these properties
to necessarily carry over to those of typical trajectories. Nevertheless, they
do give a clue to the behavior of these trajectories for large n and relatively
small t.

If g is a discontinuous function, then specific realizations of [Gt : t # T ]
will also be discontinuous. Since G is the average of a bounded function,
however, the size of these discontinuities will vanish as n � �. It is then
reasonable to suppose that the deterministic curve, [�t( y): t # T ], will be
continuous in t.

Recall that g and .t are continuous +-almost everywhere. Since g is
bounded +-a.e., clearly g b .t is so as well. If we suppose t [ g(.t(x)) is
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continuous for +-a.e. x # X, then of course g(.t$(x)) � g(.t(x)) as t$ � t for
+-a.e. x # X. By Eq. (18) and Lebesgue dominated convergence, this implies

lim
t$ � t

�t$( y)= lim
t$ � t |X

g b .t$ dP*=|
X

g b .t dP*=�t( y) (23)

where *=%&1( y). Thus, t [ �t( y) will be continuous provided t [
g(.t(x)) is continuous for +-a.e. x # X.

Now suppose only that t [ .t(x) is continuous for +-a.e. x # X and
that .t is +-nonsingular, i.e., + b .&1

t O+, for all t # T. Since g is continuous
+-a.e., there exists an open set, A, with null complement such that g,
restricted to A, is continuous. Furthermore, since .t is continuous +-a.e.,
there is a set, B, with null complement such that t [ .t(x) is continuous
for all x # B. Thus, if x # .&1

t (A) & B, then the composite map t [ .t(x) [
g(.t(x)) is continuous. Since .t is +-nonsingular,

+[X "(.&1
t (A) & B)]�+[X ".&1

t (A)]++[X "B]=+[.&1
t (X "A)]=0

Thus, t [ g(.t(x)) is continuous for +-a.e. x # X, and we conclude the
following:

Theorem 3. If t [ .t(x) is continuous for +-a.e. x # X and .t is
+-nonsingular for all t # T, then t [ �t is continuous.

For many physical systems, the dynamical law .t is not only invertible
but also time reversible in the sense that .&1

t =.&t . In such cases, we shall
say that .t is time reversible. Time reversibility often appears in physical
systems which have the added property that .t b R=R b .&t for some
involution R=R&1, a property referred to as time reversal invariance.
When such an R exists, every particle microstate x has a mirror point R(x)
such that .t(x)=R(.&t(R(x))); hence, the trajectory of x is mirrored by
the trajectory of R(x) with the direction of time reversed. We may then
partition X into disjoint sets X0=R(X0), X1 and R(X1). If the observable
and a priori measure are invariant under R, i.e., g= g b R and + b R&1=+,
then a typical initial microstate (x1 ,..., xn) # [G # B$] will include roughly
equal numbers of points from X1 and R(X1). On this basis, one expects the
trajectories [Gt(x1 ,..., xn): t�0] and [Gt(x1 ,..., xn): t�0] to be similar,
though not identical, when n is large. This suggests that the deterministic
curve should be perfectly symmtric in time. Indeed, it is easy to see that,
if .t is time reversal invariant under R and both g and + are invariant
under R, then
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�t( y)=|
X

(g b R b .t)
e*g b R

Z(*)
d+

=|
X

(g b .&t b R)
e*g b R

Z(*)
d(+ b R&1)

=�&t( y)

Thus, time reversal invariance is sufficient for time symmetry of the deter-
ministic curve, provided both the observable and the a priori measure are
invariant under R.

Suppose g is a simple function of the form g=�m
i=1 ai1Ci

, where each
ai is distinct and C1 ,..., Cm form a partition of X. Now, the deterministic
curve for this g is given by

�t( y)= :
m

i=1

:
m

j=1

ai e*aj +[.&1
t (Ci ) & C j ]< :

m

k=1

e*ak +[Ck] (24)

using Eq. (18). Since we have supposed g b R= g, notice that R&1(Ci )=C i

for each i. Furthermore, since + is invariant under R,

+[.&1
t (C i ) & C j ]=+[R&1(.&1

t (Ci )) & R&1(Cj )]

=+[.t(R&1(Ci )) & Cj ]

=+[.t(Ci ) & Cj ] (25)

Furthermore, if + is invariant under .t , then

+[.&1
t (Ci ) & Cj ]=+[Ci & .t(Cj )] (26)

The system therefore exhibits strong detailed balance in the sense that

+[.&1
t (Ci ) & Cj ]=+[Ci & .&1

t (C j )] for all i, j, and t (27)

Conversely, if we suppose only that .&1
t =.&t exists and preserves +,

then Eq. (27) implies time symmetry of the deterministic curve when g is
simple. For example, suppose g=a11C1

+a21C2
has only two possible

states, with C1=C and C2=X "C. For any .t which preserves +,

+[.&1
t (X "C ) & C]=+[C]&+[.&1

t (C ) & C]

=+[.&1
t (C )]&+[C & .&1

t (C )]

=+[(X "C) & .&1
t (C )] (28)
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Thus, g exhibits strong detailed balance. The corresponding deterministic
curve will be time symmetric provided .&1

t =.&t exists. In general, macro-
scopic averages of two-state single-particle observables are always time
symmetric, provided the dynamics are time reversible and preserve the a
priori measure. A system which exhibits strong detailed balance need not,
however, be time reversal invariant. (Consider C=[0, 1] and .t(x)=x+t
on R. The only possible R is R(x)=&x, yet clearly R(C ){C.) Thus, time
reversal invariant systems form a proper subset of all systems exhibiting
time symmetry.

Finally, let us consider the asymptotic behavior of the deterministic
curve for large t. Suppose once more that + is invariant under .t . The
collection, [.t : t # T ], of maps is said to be mixing with respect to + if, for
any measurable subsets A and B of X,

lim
t � �

+[.&1
t (A) & B]=+[A] +[B] (29)

From this definition and the fact that P*O+, it follows that [21, p. 72]

lim
t � � |

X
g b .t dP*=|

X
g d+= y

*
(30)

If .t is time reversible, then this result clearly holds in the limit t � &�
as well. By its definition, mixing is both a necessary and sufficient condition
for �t( y) to converge to Eg(+)= y

*
for any g. In cases where the dynamics

are not mixing, however, one may still have convergence in time for a
restricted set of macroscopic functions.

As we have seen in our discussion of Poincare� recurrence, convergence
in time for �t( y) need not imply convergence in time for Gt . In fact, such
behavior is often quite unlikely. Nevertheless, on a short enough time scale,
a scale which increases with n, and for large enough n, both �t( y) and Gt

will appear to converge to the same limit along the same trajectory.

5. FRACTIONAL OCCUPATIONS

Consider the case g=1C , for which Gt is the fraction of points in C
at time t. Since e*g=1X "C+e*1C , the corresponding partition function is

Z(*)=+[X "C]+e*+[C] (31)

Recall that %(*)=9$(*)=e*+[C]�Z(*) for * # (&�, �); thus, for y # (0, 1),

%&1( y)=log _ y
+[C]

+[X "C]
1& y & (32)
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Using Eqs. (7), (18), (31), and (32) we find, for y # [0, 1],

�t( y)= y+[.&1
t (C) | C]+(1& y) +[.&1

t (C ) | X "C] (33)

This result is easily understood as follows: The expected number of points
in C at time t will be the number of points starting in C times the fraction
of those points expected to be in C at time t plus the number initially out-
side C times the fraction of those points expected to be in C at time t.

When .t is +-measure preserving and time reversible, the deterministic
curve for fractional occupations is such that it is never further from the
equilibrium value, y

*
=+[C], than the initial macrostate. To see this, sup-

pose y> y
*

and note that

�t( y)& y=&y+[.&1
t (X "C ) | C]+(1& y) +[.&1

t (C ) | X "C]

�&+[C] +[.&1
t (X "C ) | C]++[X "C] +[.&1

t (C ) | X "C]=0

(34)

by Eq. (28). Therefore, �t( y)� y for all t, with equality if and only if
+[.&1

t (X "C) & C]=0 (e.g., when t=0). Similary, y< y
*

implies �t( y)
� y for all t. If �t( y) is differential in t (i.e., for the left and right sided
derivatives), this furthermore shows that the deterministic curve always
tends initially toward equilibrium, even if it does not approach equilibrium
asymptotically.

Notice that the function % is associated only with the initial macro-
state. The time-evolved behavior of fractional occupations is contained in
the two transition probabilities in Eq. (33). In general, these may be dif-
ficult to determine. For the baker map, ,, a discrete time map on the unit
square, (22) these may be computed for rectangular cells with Lebesgue
measure.(23) This allows one to calculate �t( y) for several time iterations
and to compare this with Monte Carlo simulations. Although an abstract
map, the baker map shares many of the relevant features of more realistic
Hamiltonian dynamical systems. In particular, it is Lebesgue measure
preserving, mixing, and time reversal invariant in the sense that , b R=
R b ,&1, where R interchanges the ordinate and the abscissa.

In Fig. 1 we have plotted �t( y) for t=&10,..., 10 and y=0.4 using the
baker map. (Since the map is invertible, negative times refer to iterations
of the inverse map.) The cell was chosen arbitrarily to be C=[0.2, 0.6)_
[0.0, 0.5), for which +[C]=0.2. The values of �t( y) are connected by
straight solid lines in the figure. For comparison, a single realization of
an ensemble of n=50,000 points was generated which satisfied the initial
macrostate y=0.4. This was done by drawing the first wnyx points
uniformly from C and then drawing the rest from outside C. (Here,
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Fig. 1. Plot of the fractional occupation of C versus time for the baker map with C=
[0.2, 0.6)_[0.0, 0.5) and y=0.4. Straight lines are drawn between the values of �t( y) for each
integer value of the iteration time t. The solid dots are the values of Gt for a single realization
of an ensemble of n=50,000 points. The error bars are 950 confidence intervals.

``uniformly'' means with respect to Lebesgue measure.) Once generated, the
known form of the map .t :=,t was used to time evolve the initial ensemble
for each value of t. The fractional occupation, Gt , was then computed for
each time-evolution of the initial ensemble and is indicated by a solid dot
in the figure.

The qualitative behavior of �t( y) in Fig. 1 is particularly notable in
two regards. First, it is readily observed that the plot is symmetric about
t=0; in particular, �&t( y)=�t( y) exactly, while G&t and Gt are only
approximately equal. This, as was shown in Section 4.2, is a general
property of two-state systems for which .t is +-measure preserving and
time reversible. Hence, there is no distinction between the forward and
reverse time directions. The second observation is that �t( y) � +[C] as
t � \�, which is a direct consequence of the mixing property. Thus, the
baker map provides a simple model of an equilibrating macroscopic quantity.

A second comment is that, while at each given time, t, the most prob-
able macrostate is �t( y), for any finite n the set [�t( y): t # Z] is itself an
improbable realization of [Gt : t # Z]. This may be understood by observing
that, given =>0, we have |�t( y)&+[C]|<= for all |t| sufficiently large, yet,
by Poincare� recurrence theorem, |Gt&+[C]|>= for infinitely many values
of t, almost surely.

The family of macroscopic maps, [�t : t # Z], does not form a group, or
even a semigroup, in contrast to the family of microscopic maps, [.t : t # Z].
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Thus, while x=.&t(.t(x)), in general y{�&t(�t( y))=�t(�t( y)), since �t

is time symmetric. Furthermore, [�t : t�0] does not even form a semi-
group, since this would imply |�t( y)& y

*
|�|�t+s( y)& y

*
| for all s, t�0,

i.e., that all future macrostates are closer to equilibrium than their prede-
cessors. To understand this note that, while �t+s( y) describes the state of
an observable at time t+s whose value was y at time zero, �s(�t( y))
describes the state of an observable at time t+s whose value was �t( y) at
time t. The latter corresponds to a rerandomization of the original distribu-
tion, which removes correlations that would otherwise be preserved by the
dynamics and causes disagreement with the actual time evolution of the
observable.

A more physical example is that of an ideal gas in a box, a paradigm
in discussions of nonequilibrium and irreversibility.(24, 25) For a particle
with position x # [0, L) and velocity v # R in a box with rigid, reflecting
walls of length L we may define the reduced parameters of position,
!=x�L, and velocity, '=v�L. The dynamics are then given simply by

.t(!, ')={(!+'t&w!+'tx , ')
(1&!&'t+w!+'tx , &')

if w!+'tx is even,
if w!+'tx is odd

(35)

The a priori measure is taken to be uniform in position and Gaussian in
velocity; thus,

d+(!, ')=1[0, 1](!) ,_(') d! d' (36)

where ,_(') :=(2?_2)&1�2 e&'2�2_ 2
and _>0.

Let C=[0, 1�2]_R, so Gt is the fraction of particles on the left side
of the box. We then have

+[.&1
t (C ) | C]= :

�

n=&�

In(t) (37a)

+[.&1
t (C )|X "C]= :

�

n=&�

I� n(t) (37b)

where

In(t)={2 ��
&� �1�2

0 1[0, 1�2](!&'t&n) ,_(') d! d'
2 ��

&� �1�2
0 1[0, 1�2](1&!+'t+n) ,_(') d! d'

if n is even,
if n is odd

(38)
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and similarly for I� n(t) with 1[0, 1�2] replaced by 1[1�2, 1] . For t>0 and n
even we find

In(t)=2(2?)&1�2 _t[e&(n+1�2)2�(2_ 2t2)+e&(n&1�2)2�(2_ 2t2)&2e&n2�(2_2t 2)]

+\n+
1
2+ erf \ 2n+1

2 - 2_t++\n&
1
2+ erf \ 2n&1

2 - 2_t +&2n erf \ n

- 2_t +
(39)

whereas for t>0 and n odd we find

In(t)=2(2?)&1�2 _t[e&(n+1)2�(2_ 2t2)+e&n2�(2_2t2)&2e&(n+1�2)2�(2_ 2t2)]

+(n+1) erf \ n+1

- 2_t++n erf \ n

- 2_t+&(2n+1) erf \ 2n+1

2 - 2_t+
(40)

Similar expressions may be obtained for I� n(t): for n even the expression is
the same as that for In(t) when n is odd, while for n odd the opposite
is true. (Note that, since + is invariant under the time reversible map, .t ,
the deterministic curve for fractional occupations will necessarily be time
symmetric.)

Fig. 2. Plot of the fraction of ideal gas particles on the left side of a rigid box vs. time. The
time axis is in units of 1�_, where _ is the a priori dispersion of the velocity parameter, '. The
solid line is the deterministic curve for y=1, which is time symmetric, while the solid dots are
the values of Gt for a single realization of an ensemble of n=50,000 points. The error bars
are 950 confidence intervals. The dashed curve is for y=�0.5(1)r0.6181, illustrating the lack
of a semigroup property.
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In Fig. 2 we have plotted the deterministic curve for y=1 as a func-
tion of t (in units of 1�_). Near t=0, the deterministic curve is linear with
�t( y)r y&2(2?)&1�2 (2y&1) _ |t|. Thus, the initial tendency of the system
is always to move toward the equilibrium value of y

*
=1�2. In fact, for

the particular velocity distribution chosen, the entire curve happens to
approach equilibrium monotonically as |t| increases. (Other distributions,
for example a uniform distribution, give an oscillatory approach to equi-
librium.) Although monotonic, the family of maps [�t : t # T ] does not
form a semigroup since, for example, �0.6(1)r0.5687{0.5993r�0.1(�0.5(1)).
This is illustrated in the figure by the secondary curve with initial ordinate
�0.5(1)r0.6181.

It is worth remarking that similar behavior has also been ascribed to
Boltzmann's famous H-function.(8) For a two-state system the H-function
is a smooth convex function of the fractional occupation with a minimum
at y

*
; hence, it will always tend initially to decrease as |t| increases, though

it might not approach its minimum monotonically. (The Ehrenfests' inter-
pretation of the H-theorem is therefore only partly correct.)

6. DISCUSSION

We have considered a general class of systems composed of identical
constituents, here called ``particles,'' that are dynamically noninteracting.
For the microstates of the collective system, we supposed there is an a
priori measure, typically an invariant measure, that describes the distribu-
tion of these microstates in the absence of any restrictions based on the
given macrostate. We further supposed that the particles are statistically
independent, that any correlations among them arise only by the need to
satisfy the given macroscopic constraint. No attempt was made to justify
these assumptions at a more fundamental level, though we believe they are
quite reasonable for many physical systems.

What we have shown is that the time evolution of a particular macro-
scopic variable, namely the average over certain real-valued single-particle
functions, is such that it converges in a probabilistic sense to a well defined
curve as the number of particles tends to infinity. Specifically, we have
derived a map �t such that, if the macrostate at time 0 is constrained to
be near a value y, then the macrostate at time t will be in a given
neighborhood of �t( y) with a probability approaching one as the number
of particles tends to infinity. The map �t was defined in terms of an expec-
tation with respect to a canonical distribution in which y plays the role of
an average energy in the familiar thermodynamic formalism. The restric-
tions on the single-particle function were that it be bounded and con-
tinuous almost everywhere in a sense specified by the a priori measure. We
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found that the family of macroscopic maps, [�t : t # T ], in general forms
neither a group nor a semigroup, even if the family of microscopic maps,
[.t : t # T ], has this property.

Having established this basic convergence result for a given time, we
then considered how well the deterministic curve, the graph of �t( y) versus t,
represented the behavior of a typical realization of the macrostates over
all time. We found that the two may differ qualitatively quite substantially;
while there may be good agreement on a finite set of selected times, there
will typically be times at which they differ substantially. This was par-
ticularly true of mixing systems, for which �t( y) always converges in the
long time limit, while a typical trajectory exhibits recurrences. Under some
more restrictive conditions we proved convergence on any countably
infinite set of times, but even then recurrences are possible when n is finite.

With these caveats on the correspondence between the finite and
infinite particles cases, we considered some general properties of the expec-
tation curve as a function of time. We found that, despite the fact that the
macrostates may evolve discontinuously, the deterministic curve may be
continuous in time. We also found that, for systems which are time reversal
invariant, the deterministic curve is symmetric in time about t=0, the
point at which conditioning of initial macrostates takes place. These
properties were then related to familiar geometric properties attributed to
Boltzmann's H-curve.

We have not considered here extensions of these results to macro-
scopic variables in, say, Rd, which would involve issues of convexity that
make such an extension nontrivial. The general problem of interacting
particles poses a greater difficulty and requires a significant change of
methodology, though we conjecture that similar results will hold if �t( y) is
defined as a limit of n-particle expectations.

APPENDIX A. PROOF OF THEOREM 1

Proof. It suffices to consider xB � A� since, if xB # A%, then xB � X "A%
=X "A.

Since x
*

� �B, either x
*

# B% or x
*

� B� . Suppose the former. By Eq. (12),
Pn[B] � 1 as n � �, which implies Pn[A | B] � limn � � Pn[A]. Now,
Pn[A] � 0 if x

*
� A� , while Pn[A] � 1 if x

*
# A%. Since xB=x

*
for this

case, the result is proven.
Since x

*
� B� , 0<inf I(B� )�inf I(B%). By Eq. (12) we have, for any

=>0,

Pn[B]>exp[&an(1+=) inf I(B%)]>0
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for all n sufficiently large; thus, Pn[A | B] is well defined. Suppose further
that inf I(A & B )<�. From Eq. (12) we may also deduce that for all n
sufficiently large,

Pn[A | B]�
exp[&an(1&=) inf I(A� & B)]

exp[&an(1+=) inf I(B%)]

=exp[&an(1&=) inf I(A & B )+an(1+=) inf I(B%)]

Now suppose xB � A� . To show that Pn[A | B] � 0, it will suffice to
show that we may choose = such that

(1&=) inf I(A & B )&(1+=) inf I(B%)>0

Since this means we must choose = small enough so that

=<
inf I(A & B )&inf I(B%)

inf I(A & B )+inf I(B%)

we see that it will suffice to show that inf I(A & B )>inf I(B%). (Note that,
since inf I(B%)>0, the denominator in the above inequality is indeed non-
zero.)

We have assumed B is an I-continuity set, so inf I(B%)=inf I(B� )=
I(xB)<�. Now, if A & B =< then inf I(A & B )=�>inf I(B� )=inf I(B%)
and we are done. Suppose that A & B {<. Then there exists an x # A & B
such that I(x)=inf I(A & B ), since I is a good rate function. Notice that
xB � A & B , since A� & B�A� & B� �A� and xB � A� . Clearly, then, xB{x.
Since A & B �B� as well, inf I(A & B )�inf I(B� ), or, equivalently, I(x)�
I(xB). Equality cannot hold, however, since, if that were the case, then I(x)
would equal inf I(B� ), in violation of the assumed uniqueness of xB . There-
fore, inf I(A & B )>inf I(B� )=inf I(B%).

Now suppose inf I(A & B )=� instead. By Eq. (12), this implies
Pn[A & B] � 0. Since Pn[B]>0 for all n sufficiently large, this implies
Pn[A | B] � 0. K

APPENDIX B. PROOF OF GIBBS CONDITIONING LEMMAS

The proof of Lemmas 1 is adapted from that of Ellis, (20) who considers
the case in which g is a simple function. The extension to a general bounded
measurable function is similar and is included here for completeness.
Dembo and Zeitouni [11, p. 294�297] prove Lemma 2 for the {-topology,
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for which Eg is continuous by definition for any bounded g. (It is also con-
tinuous in the weak topology if one assumes further that g is continuous.)
Since we need only show that P # A$ implies Eg(P) # B$ for PO+, we are
able to prove a stronger result, assuming only that g is bounded and con-
tinuous +-a.e., which is valid even in the standard weak topology. Similar
comments apply to the proof of Lemma 3, which follows readily if one
assumes g is continuous.

B.1. Proof of Lemma 1

Proof. We first note that, since * [ e*g(x) is bounded and differen-
tiable to all orders for +-a.e. x # X, by Lebesgue dominated convergence 9$
and 9" are well-defined and continuous. Specifically, 9$(*)=�X g dP* and
9"(*)=�X g2 dP*&(�X g dP*)2�0 for * # R. By assumption 9"(*) is non-
zero, so in fact 9"(*)>0 and hence 9$ increases monotonically. Since %
increases monotonically and %(0)= y

*
, *>0 implies y=%(*)> y

*
, while

*<0 implies y=%(*)< y
*

. Since % is invertible, we have conversely that
y> y

*
implies *>0, while y< y

*
implies *<0. Clearly, *=0 if and only

if y= y
*

. K

B.2. Proof of Lemma 2

Proof. Since P*O+ and g is bounded, we have I+(P*)=*y&9(*)
<�. Now let P # A$ "[P*]. If P O3 +, then I+(P)=� and I+(P*)<I+(P),
while for PO+ we find I+(P)>* �X g dP&9(*).

Since g is bounded and continuous +-a.e. and PO+, Eg is continuous
at P; thus, P # A$ implies Eg(P)=�X g dP # B$ . If y< y

*
then B$ =

[ y&$, y] and *<0 by Lemma 1. Now, *<0 and �X g dP� y imply
* �X g dP�*y. If, on the other hand, y> y

*
, then B$ =[ y, y+$] and

*>0, while �X g dP� y, so again * �X g dP�*y. Finally, if y= y
*

then
*=0 and * �X g dP�*y holds trivially. Thus, for all P # A$ ,

I+(P*)=*y&9(*)�* |
X

g dP&9(*)<I+(P)

Since P* # A$�A$ , this completes the proof. K

B.3. Proof of Lemma 3

Proof. Suppose y� y
*

and let *n=*&1�n, where *=%&1( y). (A simi-
lar argument may be applied if y� y

*
.) Since % is strictly monotonic,
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Eg(P*n
)=%(*n)<%(*)= y. We will first show that Eg(P*n

) # B%$ for all n
sufficiently large and that Eg(P*n

) � Eg(P*). Since Eg is continuous at P* ,
it will suffice to show that P*n

� P* in \.
Now, convergence in \ is equivalent to the weak convergence of P*n

to
P* [9, p. 310]. Thus, let h be an arbitrary bounded continuous function on
X and define F such that F(*$)=�X he*$g�Z(*$) d+ for *$ # R. Since the
integrand is bounded and continuous for +-a.e. x, it follows that F is con-
tinuous everywhere and F(*n) � F(*). This proves weak convergence and
hence convergence in \.

We have shown that Eg(P*n
) # B%$ for all n sufficiently large. From this

it follows that P*n
# A%$�A$ and hence I+(P*n

)=*nEg(P*n
)&9(*n)>

I+(P*) for all n sufficiently large. Now, inf I+(A%$)�inf I+(A$ ), so I+(P*n
)�

inf I+(A%$)�inf I+(A$ )=I+(P*). Since Eg(P*n
) � Eg(P*) and 9(*n) � 9(*)

as *n � *, it is clear that I+(P*n
) � I+(P*). Hence inf I+(A%$)=inf I+(A$ ).
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